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INTRODUCTION

The service environments projected for structural ceramics are quite hostile. In the gas
turbine engine, some of the structural ceramics will face hot corrosion: the attack by molten
Na,;SO4 (Tm = 884°C) which condenses on engine parts when ingested NaCl reacts with sul-
fur impurities in the fuel. Marine propulsion gas turbine engines expcrience a similar lower
temperature suifate-induced corrosion. How long-term exposure to these corrosive environ-
ments affects the mechanical properties of ceramics is of critical importance to their success-
ful application in engines as high temperature structural components.

Although, at the present time, monolithic tetragonal zirconia polycrystal ceramics (TZPs)
are not being considered for structural applications such as gas turbine blades and other com-
ponents in the high temperature regions (>1000°C) of gas turbine engines, this does not pre-
clude the use of composites based on a TZP matrix from finding application in this
environment. Moreover, the use of zirconia ceramics in nonstructural applications in the high
temperature region of gas turbines appears inevitable (c.g., thermal barricr coatings, ctc.).
Thus, the effect of hot corrosion on the mechanical properties of TZPs may have important
technological implications. On the other hand, Si3N, ceramics are being considered and, in
certain applications, incorporated as monolithic components in advanced engines.

The actual mechanisms of hot corrosion in TZPs!” and Si3N46"2 have been studied. How-
ever, there has been little work examining the interactions between hot corrosion and mecchani-
cal properties. Important properties that may be affected by hot corrosion are room
temperature and elevated temperature strength, toughness, and creep-rupture behavior.

This report provides a review of the mechanisms of hot corrosion, and presents results on
the effect of hot corrosion on the room temperature strength of two TZPs and a Si;N;. A
high purity alumina ceramic has also been examined for comparison.

LITERATURE REVIEW
Formation of Sodium Sulfate in Engines

One of the Army’s important long-range goals is to develop engines with the ability to
handle altcrnate fuels (i.e., various grades of gasoline, diesel, and shale oil or coal-derived

1. HAMILTON, J. C, and NAGELBERG, A S. In Situ Raman Spectroscopic Study of Yuria-Stabilized Zirconia Attack by Molten Sodion
Vanadate. J. Am. Ceram. Soc., v. 67, no. 10, 1984, p. 686-690.

BARKALOW, R, and PETTIT, F. Mechanisins 06.‘101 Corrosion Attack of Ccramic Caatinﬁ Materials. Proccedings of 1st Conlerence on
Advanced Materials for Aliernative Fuel Capable Directly Fired Heat Enginces, CONF-790749, J. W. Fairbanks and J. Stinger, ed.. NTIS,
Springficid, VA, 1979, p. 704-710.

JONES, R. L., NORDMAN, D. B, and GADOMSKI, S. T. Sulfation of Y>03 and HfO: in Relation 10 MCrAl Coatings. Metall. Trans.,
v. 16A, no. 2, 1985, p. 303-306.

JONES, R. L., JONES, §. R., and WILLIAMS, C. E. Sulfation of CeO2 and ZrO: Relating to IHot Corrosion. J. Electrochem. Soc., v. 132,
no. 6, 1985, p. 1498-1501.

NAGELBURG, A. S. Destabilization of Yuria-Stabilized Zirconia Induced by Molten Sodium Vanadate-Sodium Sulfate Melts. ]. Elecrochem.
Soc., v. 132, no. 10. 1985, p. 2502-2507.

TRESSLER, R. E., MEISER, M. D., and YONUSHONIS, T. Molten Salt Corrosion of SiC and SisNs Ceramics. J. Am. Ceram. Soc.. v. 39,
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BOURNE, W. C.,, and TRESSLER, R. E. Molien Salt Degradation of SisN4 Ceramics. Am. Ceram. Soc. Bull., v. 59, no. 4, 1980, p. 443452
SMIALEK, J. L., FOX, D. S., and JACOBSON, N. S. Hot Corrosion Attack and Stwrength DcTadumm of SiC and SizN4 Prepared for
NASA-Lewis Research Center for the Environmental Degradation of Engineering Materials 111, NASA TM-89820, April 1315 1087,
10. JA1C3(391-S4(R)N' N. S, and FOX. D. S. Molien Salt Corrosion of Silicon Nitride: I, Soduwn Sulfate. ' J. Am. Ceram. Soc., v. 71, no. 2. JUSS,
p. 139-148.
11. JACOBSON, N. S., SMIALCZK, !. i, and FOX, D. S. Molten Salt Corrosion of SiC and SisN+« Prepared for NASA-Lewis Research Coen-
ter, NASA TM-101346, November 1988, / ¢ Treparedfar BasAtats Reand v
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fuels) without requiring physical adjustments to the engine or compromisiiig enginc perfor-
mance and life.!* Low grades of these fuels commonly contain parts per million of onc or
more of the following: Na, S, K, and V. During the combustion process, reactions can
occur involving these impurities, creating a material which can lead to corrosion of the cnginc
components.

This report is concerned with the corrosion by sodium sulfate. Sodium sulfate (Na,SO,)
is formed and condenses on engine components when sodium, ingested from fuel impuritics or
a marine eavironment, rcacts with sulfur impurities in the fuel according to the following
reaction:

2NaCl (g) + SO, (g) + 1720, (g) + H,0 (g) = NaySO, (1) + 2 HCI (g)." (1)

Typically, corrosion is only a problem between the melting point and the dew point of the cor-
rosive material, since in this temperature range the material is fluid and can rapidly spread,
enhancing the corrosion process. Below the melting point, transport is too slow, thus, the

rate of corrosion is very limited. Above the dew point, thermodynamics inhibit the formation
of the corrosive medium due to evaporation. However, higher pressures increase the dew
point and, thus, the temperature range in which corrosion is possible. Since advanced cngincs
are expected to operate at higher temperatures and pressures, an understanding of the corro-
sion mechanisms in ceramics and the effects on mechanical properties are important.

Interaction of Zirconia and jts Stabilizers with Sodium Sulfate

The formation of TZP materials is possible due to the high solubility of yttria (Y;03)
and ceria (CeO,) in zirconia. These oxides act to stabilize the tetragonal grains against the
tetragonal-to-monoclinic transformation which occurs in pure zirconia. This allows for the pro-
duction of a zirconia material which is essentially 100% tetragonal, having an unusual combina-
tion of high strength and toughness. Because of these excellent properties, TZP matcrials
have been extensively examined for potential use in advanced engines.!> 18

These stabilizing oxides limit the hot corrosion resistance of TZPs. Both oxides can
undergo a sulfation reaction which effectively “leaches” the oxide frcm the TZP, causing sur-
face destabilization and property degradation. Barkalow and Pettit® first proposed that Y,O,
is leached from a TZP by the sulfation reaction in Equation 2.

Y,0; + 350; = 2Y*? + 350,7 (2)

This reaction is dependent on the partial pressure of SOs.  They showed that at 700°C, a
SO; partial pressure of only 70 Pa was rcquired for the forward reaction to occur.

13. GLANCE, P. C., and MUNT, R. Engine Research, Development, and Acquisition Strategy for US .'rmy Group Vehicles. SAL Paper 830674,
SAE International Congress and Exposition, Detroit, Mi, {983, p. 1-13.

14. KOHL, F. J, STEARNS, C. A, and FRYBURG, G. C. Sodium Sulfate: Vaponzation and Role in Corrosion Flames. Mctal-Slag-Gas
Reactions and Processes, Z. A. Foroulis and W. W. Smeltzer, ed., The Electrochemical Society, Pennington, NJ, 1975, p. 649.

15. SWAB, J. J. Properiies of Yunia-Tetragonal Zirconia Polycrystal (Y-TZP) Materials Afier Long Term Exposure 1o Elevated Temperanures.
U.S. Army Matenals Technology Laboratory, MTL TR '89-21, March 1989, Preparcd for the U.S. Department of Energy under Intergency
Agreement DE-AIOS-840R-21411.
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September 198S.
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MTL TR 87-29, Junée 1987, Prepared for U.S. Department of Energy under Interagency Agreement DE-AIO5-840R-21411.

18. HECHT, N. L., McCULLUM, D. E., GRANT, D. W., WOLF, J. D., GRAVES, G. A, and GOODRICH, S. The Ewpenimental Evaluation
of Environmental Effects in Toughened Ceramics for Advanced [leat Engines. Proceedings of the 23rd Automotive Technology

evelopment Contractors’ Coordination Meeting, Dearbomn, MI, October 1985, Socicty of Automotive Engincers, Warrendale, PA.

March 1986, p. 299-310.
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Later work® confirmed the high reactivity of Y,O3 with SO; yielding a similar reaction
which suggests Y,0,(SO;) or Y,(SOy4); as the sulfation products. Tests at 700°C showed that
Y.0; was so reactive that the equilibrium partial pressure of SO; could not be measurcd with
their equipment. Further tests at 850°C, 900°C, and 900°C yielded SO; partial pressure of
1.5, 2.5, and 3.5 Pa, respectively.

Jones et al.* examined the sulfation of CeO, and ZrO,. They concluded that the sulfa-
tion of CeO, follows Equation 3

CeO; (s) + SO; (g) = CeOSO, (s) (3)

and at 650°C, 700°C, and 750°C, the equilibrium partial pressure of SOj; is 30, 100, and 230
Pa, respectively. Extrapolation of the thermodynamic data from Equation 3 yiclds a partial
pressure of ~1200 Pa at 850°C for the sulfation of CeO,.

The examination of ZrO, indicated that it is difficult to sulfate. It remains esscntially
unsulfated at SO, partial pressures of ~1000 Pa at 700°C. Therefore, the hot corrosion resis-
tance of TZP materials will be dependent on the stabilizers rather than the zirconia. Of the
two common stabilized TZPs, the thermodynamic data indicates that CeO; stabilized ZrO; will
be more resistant to corrosion by Na,SO,4 than the Y,0; stabilized ZrO,.

Interaction of Silicon Nitride with Sodium Sulfate

Silicon-based ceramics rely on a thin layer of SiO, for protection against oxidation. The
degradation of Si3N, at high temperatures in a corrosive environment is believed to bc duc to
the dissolution of this protective layer. Jacobson et al.’* completed a comprehensive litcra-
ture survey of the corrosion of silicon-based ceramics with the conclusion that in the presence
of Na,SO,4 NajO is the key reactant in the corrosion process. Sodium sulfate dissociates
according to Equation 4

Na,SO,4 (1) = Na,O (s) + SO3 (g) (H

with the Na,O formed then reacting with the SiO, protective layer to form a sodium-silicate
glass, Equation 5,

xSi0; (s) + NayO (s) = NayO x(SiO;)" (5)

which allows for extensive corrosion of the ceramic. Equation 5 is controlled by the activity
of Na;O. A high a[Na;O] is considered a basic molten salt while a low a[Na,OJ is termed
an acidic molten salt. It has been shown'®!! that at 1000°C, when the a[Na,O] is below
10°'°, the reaction in Equation 5 docs not proceed, indicating that dissolution and corrosion
will only occur when the a[Na,;O] is high enough to be considered a basic molten salt. As a
note, from Equation 4 it can be seen that the a[Na,O] will be dependent on the partial pres-
sure of SO;. In the engine, this pressure will depend on the operating tempcraturc and
amount of sulfur in the fuel. Thus, the a[Na,O] and, ultimately, the corrosion behavior of
the silicon-based ceramic will vary with the engine environment.




EXPERIMENTAL PROCEDURE

Four commercially available ceramics, a yttria-TZP, a ceria-TZP, a silicon nitride, and an
alumina (see Table 1) were obtained and machined into bend bars 3 x 4 x 50 mm long. The
bars were carefully ground by a surface grinder such that the surface striations were parallel
to the long axis. All four long edges were chamfered ~45° to a depth of ~0.15 mm; the
bars were machined according to Reference 19. A minimum of 5 bars from each ceramic
were used to determine the as-received room temperature strength. They were broken in
4-point flexure according to MIL-STD-1942(MR), with inner and outer spans of 20 mm and
40 mm, respectively, and a cross-head speed of 0.5 mm/min.

Table 1.
Grain Size
Material Manufacturer Code Process Additives {eem)
Y-TZP NGK I[nsulators Z-191 Sintered Y203 0.2
Ce-TZP Ceramatec CZ203 Sintered CeQ2/Al20; 1.2
SiaNa Norton NC-132 Hot Pressed MgO 3-6
Al203 Coors Ceramics AD-999 Sintered None 3-6

Three other groups of 5 bars from each ceramic were then subjected to one of the follow-
ing treatments:

e 500 hours at 1000°C with no NazSO4
e 500 hours at 1000°C with 10 to 20 mg/cm® of NazSOq
e 500 hours at 1000°C with 50 to 75 mg,/cm2 of NazSOq4

Sodium sulfate was applied by mixing anhydrous sodium sulfate (Na,SO,) with distilled water
then applying the solution to one 4-mm by 50-mm face of each bar. The soluticn was lim-
ited to a centered 30-mm span of the face. The bars were then heated using a hot plate,
driving off the water, and leaving behind a layer of Na,SO,. The weight of each bar was
measured before and after application of the coating to ensure that the amount was in the
specified range. Tensile surfaces of each material from each condition were analyzed for
phase changes by X-ray diffraction using CuKa radiation.

Heat treatments were done in air, at laboratory ambient humidity (40% to 60%), with thc
specimens supported in an unstressed condition on silicon carbide knife edges to cnsurc uni-
form heating. The knife edges supported the compressive surface of the bar well outside the
area to be tested during 4-point flexure testing. The surface with the Na,SO, was placed
face-up during the heat trcatments to minimize any loss of the Na,SO,; Once the strength
was determined, the fracture surface of each bar was examined optically at low magnitication.
and a scanning electron microscope (SEM) was employed for high magnification examination
of selected fracture surfaces to determine cause of fracture.

19. Flexure Strength of High-Performance Ceramics at Ambient Temperatures. Department of the Army MIL-STD-1942, 21 November 1983




RESULTS AND DISCUSSION

The results of the room temperature flexure strength testing, Figure 1, show the Ce-TZP
to be the most resistant to strength degradation after exposurc to molten sodium sulfate at
1000°C, followed by the alumina and the Y-TZP. The SizNy shows the largest strength loss
after exposure.

MEAN ROOM TEMPERATURE STRENGTH (MPa)

1000
| &« One 8tanderd Deviation
200 - FF N
600 - =] —H
= =N
= = 5
400 — N ” — 5
200 | z —] E\ e
—1 —
= E 7 7
o : I
Y-TZP Ce-TZP 8llloon Nitride Alumine
] Ae-Received 2 Ne Ns 8O,
E=3 10-20 mg/om " Na 80, X3 so-78 mg/om'Nl.BO‘

Treated for 800 hours at 1060°C

Figure 1. Mean room temperature strength after corrosion with and
without sodium sulfate.

The slight strength reduction of the Ce- and Y-TZP after 500 hours at 1000°C without
Na,SO4 can be attributed to the fact that these materials are transformation-toughened ceram-
ics and are susceptible to overaging when exposed to elevated temperatures for a prolonged
time. The addition of a small amount of a rare earth oxide, such as CeO, or Y;03, along
with an appropriate processing technique, allows for the retention of mectastable tetragonal zir-
conia at room temperature. However, when overaging occurs, the tetragonal zirconia trans-
forms to the stable monoclinic phase, resulting in a reduction in slrcngth.ls"s

The Si;Ny has a significantly large reduction in strength (~40%) when exposced to the
same treatment conditions.  An oxidized layer of SiO; forms when SisNy is exposed to temper-
atures in cxcess of 1000°C for a prolonged time“®#! (Figurc 2b). The loss of strength is duc
to thc creation of oxidation pits as shown in Figurc 3b. Alumina does not undergo phenom-
cna such as these. Thus, there is no reduction in strength as a result of this exposure.

The addition of Na;SO4 to the long time/high temperature exposures docs not cause any
further strength reduction in the Cc-TZP, and only minimal reduction in the alumina.  How-
ever, the Y-TZP and, to a greater extent, the Si3N4 expericnce significant reductions in
strength.

20. FREIMAN, S. W, MECHOLSKY, 1. 1, McDONOUGH, W. J., and RICE, R. W. Effect of Oadation on the Room Temperature Swengih o
Hor-Presscd SisNeMgO and SisN+ZrQ; in Ceramics for High Temperature Performance Applications - 11, 1. J. Burke, E. N. Lenoe, and
R. N. Katz. ed.. Brook Hill Publishing, 1978, p. 1069-1076.

21. EVANS, A. G., and DAVIDGE, R. W. The Strength and Oxidation of Reaction-Bonded Silicon Nitride. J. Mat. Sei.. v, S, 1970, p 314.32%




(a) As-Received

{c) AHter 500 Hours at 1000°C with 10 to 20 mg/cm? NaeSO34 (d) After 500 Hours at 1000°C with 50 to 75 mg/em? NapSO,

Figure 2. Tensile surfaces of SiaNa.
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(a) As-Received - Machining Damage

(c) After 500 Hours at 1000°C with 10 to 20 mg/cm2 (d) After 500 Hours at 1000°C with 50 to 75 mg/cm?
NazS04 . Corrosion Pits NazS0Os . Corrosion Pits

Figure 3. Fracture orgins of silicon nitride. Note the change in magnification from (a) ana (b) to (c) and (d).




As previously mentioned, it has been shown? that Y,0; can be leached from zirconia.
The leaching of the yttria would allow for the spontaneous transformation from tetragonal to
monoclinic Wthh results in a drop in strength. This is similar to the hypotheses proposed by
Lange et al.?2 to account for the catastrophlc degradation of Y-TZP that can occur when it
is treated between !70°C and 400°C in the presence of water vapor. They found that the
Y,0; reacts with the water vapor to form a-Y(OH);. The formation of this hydroxide
depletes the Y,O; from the tetragonal grains creating monoclinic nuclei which can grow spon-
taneously to transform the tetragonal grains to monoclinic. If the monoclinic grains become
large enough, microcracks will develop, allowing further leaching that leads to strength degrada-
tion. Thus, “surface corrosion”™ of Y-TZP could be due to Y,0; depletion, resulting in the
spontaneous tetragonal-to-monoclinic transformation of the zirconia and a reduction in
strength beyond what can be attributed to overaging alone.

Figure 4, shows the phase stability of the TZPs. The high amount of monoclinic ZrO; in
the as-received TZPs can be attributed to the stresses placed on the surface of the bar dur-
ing machining. These stresscs transform the surface ZrO; from tetragonal to moncclinic. Sub-
sequent treatments at 1000°C relieves the stresses allowing most of the monoclinic grains to
revert to tetragonal grains.

o % MONOCLINIC

16 +
10 1L
6 o
. Y7 =N\ o N
Y-TZP Ce-TZP
{1 As-Received {ZJ No Na,80,
E=] 10-20 mg/om*® Na 80, ] 80-78 mg/om® Ns 80,

Treated for 500 hours st 1000°C

Figure 4. Surface phase stability of Y-TZP and Ce-TZP after thermal
exposure with and without sodium sultate.

One wou'd expect an increase in the monoclinic ZrO, as the Y,03; was being lcached
from the surface. However, since this potenual phenomenon only occurs in the first few lay-
ers of this fine- grav ed material, (~0.2 ,um) due to the small amount of Na,SO,, the resolu-

tion of the X-rav « ‘traction equipment is probably not sensitive enough to pick up these
changes. In ad¢ 'y - flexure testing is sensitive to surface flaws rather than volume tlaws.
Thus, during hign tcrinerature corrosion, the corrosive material may penetrate in and around
these flaws causing - - -al layers of grains to transform and enhancing the severity of the

flaws. This pc.crtia! law cnhancement may not be discernible in routine examinations.
Chemical analysis of the remaining sodium sulfate after treatment would be a morce significant
measurc of the lcaching phcnomenon and resultant phase transformation.

22. L.ANGF F. F, DUNLOP, G. L, and DAVIS, B. |. Degradation During Aging of Transformation-Toughened ZrOxY>O3 Materials at 251'¢
" Am. Ceram. Soc., v. 69, no. 3 1986, p. 237- 240.




Since the Ce-TZP docs not show a strength loss with the addition of Na,SQOy, the alore-
mentioned thermodynamic data, which indicated that ceria is more resistant to sulfation than
yttria, is supported. Theicfore, all things being equal, a CeO; stabilized zirconia should bc
superior to a Y,O; stabilized zirconia in hot corrosion resistance. In fact, plasma-sprayed
Ce0,-ZrO; has been patented as a protective coating for superalloys exposed to vanadium
and SO, impurities in gas turbine enginea.2

The high purity alumina exhibited only a minor degree of strength degradation when
exposed to sodium sulfate. Gannon et al.?* found that the hot corrosion resistancc of alu-
mina refractories to molten K;SO, increased with decreasing open porosity. The increased
resistance was due to a reduction in the surface area available for corrosion. They also
showed that control of the grain boundary chemistry played an important role in corrosion
resistance. The effect of Na;SO4 on a glassy grain boundary phase should be similar to that
of K,SO; since alkali elements tend to behave similarly in silicate-based glasses. As a result,
the minimal strength reduction in the alumina may be due to the corrosion of an, as yct,
undetermined glassy grain boundary phase.

Examination of the fracture surfaces of the TZPs and the 2lumina showed that the type
of strength-limiting flaw did not change after exposure to molten sodium sulfate, Figures 5
through 7. This was not the case for the Si3N4. It experienced an additional strength loss
of ~25% when exposed to Na;SO,, due to a change in the flaw type and size. The typical
flaw for the as-received material was machining damage, Figure 3a, and that for the bars
treated without any Na,SO, was oxidation pits, Figure 3b. For the bars exposed to Na,SO,,
the flaw also a pit, but this time a corrosion pit, Figures 3c and 3d, which are on the order
of 10 times larger than the oxidation pits. Analysis of the pit contents showed the presence
of a small amount of Na in addition to Si and Mg. The presence of Na, as well as the
glassy-like appearance of the contents of the corrosion pit, indicates that a sodium-silicate
glass has been formed as outlined in Equation 5. The Mg is due to the addition of MgO as
a hot-pressing aid.

Several studies have seen similar strength reductions®”>!! and changes in the strength-
limiting flaws.®’ Bourne and Tressler® suggeot that corrosion occurs due to attack of the
oxide grain boundary phase, which creates the pits. X-ray analysis of the surface of the
Si;N4 bars showed and increase in cristobalite with heat treatment time, while the addition of
the sodium sulfate caused peak broadening indicating the formation of an amorphous layer,
possibly a sodium-silicate glass.

For all materials, increasing the amount of Na,SO, does not cause further reduction in
strength.  For the Y-TZP, this indicates that once a certain level of Y;0;3 has been removed
from the surface, further corrosion via this mechanism does not occur in the time frame ol
these tests. In the case of alumina and Si;Ny, the grain boundary phasc in cach is resistant
to corrosion beyord a certain level.

23. SIEMERS, P. A and McKEE, D. W. U.S. Patent 4, 328, 285.

24. GANNON, R. E., HALS, F. A,, and REYNOLDS. H. H. Corrosion Swudies in Matcrials for Awaliary Equipment in MIID Power Plans in
Corrosion Probicms in Encrgx Convcmon and Generation, C. J. Tedman, Jr., ed., Corrosion Division, The Electrochemical Society,
Princcton, NJ, 1974, p. 212-224
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Fiéure 5. Fracture origins of Y-TZP - regions of high porosity.
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Figure 6. Fracture origins of Ce-TZP - regions of high porosity.

10,um

(a) As-Received (b) After 500 Hours at 1000°C with Na>SO,

Figure 7. Fracture origins of alumina - pores.
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CONCLUSION

It was found that commercially available Ce-TZP has excellent resistance to strength degra-
dation by molten sodium sulfate when compared to a Y-TZP or a Si3N,;. A possible mecha-
nism of strength degradation in the Y-TZP is the Y,0; depietion of the Y-TZP surface
which would allow the tetragonal-to-monoclinic transformation of the zirconia to occur sponta-
neously, resulting in a strength reduction above that seen due to overaging alone. Strength
degradation in the SizN4 occurs due to the formation of large corrosion pits which may occur
when the sodium sulfate reacts with the protective SiO, layer, allowing further attack of the
oxide grain boundary phase. High purity, fully dense alumina is also very resistant to corro-
sion. However, it does exhibit a slight strength reduction which may be attributed to corro-
sion of an undetermined glassy grain boundary phase.
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